Thermal stress analysis in hot rolling process

Main Article Content

Taiwo Olajide Hazeez
Gbeminiyi Mufutau Sobamowo
Ibrahim Ademola Fetuga
Uchechukwu Charles Modebelu
Sodiq Adewale Adeleke
Kolade Sodeeq Aderemi

Abstract

In continuous hot slab rolling, it is important to know the temperature distribution within the strip along the length of the rolling mill because the dominant parameter controlling the kinetics of metallurgical transformations and the flow stress of a rolled metal is temperature. A mathematical model based on finite difference method is utilized to predict the temperature distribution and microstructural changes during the continuous hot slab rolling process. The effects of various parameters such as heat of deformation, the work-roll temperature, the rolling speed, and the heat transfer coefficient between the work-roll and the metal were all taken into account in the analysis. From the parametric analysis carried out, it was shown that the temperature in the deformation zone increases as the percentage reduction in the strip thickness and the rolling process, it affects the temperature distribution in the work-roll significantly, the heat generation on the strip-roll interface increases significantly when the percentage reduction in the strip exceeds a certain value. It was also shown that at low rolling speed, the temperature increase is uniform inside the strip and the roll and the maximum temperature of the strip occurs in the neighborhood of the strip centerline region.

Article Details

How to Cite
[1]
T. O. Hazeez, G. M. Sobamowo, I. A. Fetuga, U. C. Modebelu, S. A. Adeleke, and K. S. Aderemi, “Thermal stress analysis in hot rolling process”, ET, vol. 2, no. 4, Nov. 2023.
Section
Original Scientific Papers

References

F. J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena”, Elsevier Science, Oxford (UK), (1996)

G. E. Dieter, “Mechanical Metallurgy”, McGraw-Hill, New York (USA), (1987)

M. Pietrzyk and J. G. Lenard, “A study of heat transfer during flat rolling”, Int J. Numer. Methods Eng, Vol. 30(8), pp. 1459-1469, https://doi.org/10.1002/nme.1620300809, (1990)

C. Bertrand-Corsini, C. David, A. Bern, P. Montmitonnet, J. L. Chenot, P. Buessler and F. Fau, "A three dimensional thermomechanical analysis of steady flows in hot forming processes: applications to hot flat rolling and hot shape rolling", In: Modelling of Metal Forming Processes, J. L. Chenot and E. Oñate, Eds. Springer, Dodrecht (Netherlands), pp. 271-279, (1988)

G. F. Bryant and M. O. Heselton, "Roll gap temperature models for hot mills", Metals Technology, Vol. 9(1), pp. 469-477, https://doi.org/10.1179/030716982803285792, (1982)

G. F. Bryant and T. S. L. Chiu, "Simplified roll-temperature model: spray-cooling and stress effects", Metals Technology, Vol. 9(1), 485-492, https://doi.org/10.1179/030716982803285729, (1982)

J. C. Heinrich and O. C. Zienkiewicz, "Quadratic finite element schemes for two-dimensional convective transport problems", International Journal for Numerical Methods in Engineering, Vol. 11(12), pp. 1831-1844, https://doi.org/10.1002/nme.1620111207, (1977)

S. Serajzedah, A. K. Taheri, M. Nejati, J. Izadi and M. Fattahi, "An investigation on strain inhomogeneity in hot strip rolling process", Journal of Materials Processing Technology, Vol. 128(1-3), pp. 88-99, https://doi.org/10.1016/S0924-0136(02)00276-5, (2002)

S. Serajzadeh, "Prediction of temperature distribution and phase transformation on the run-out table in the process of hot strip rolling", Applied Mathematical Modelling, Vol. 27(11), pp. 861-875, https://doi.org/10.1016/S0307-904X(03)00085-4, (2003)

V. Nagpal, G. D. Lahoti and T. Altan, "A numerical method for simulataneous prediction of metal flow and temperature in upset forging of rings", Journal of Engineering for Industry, Vol. 100(4), pp. 413-420, https://doi.org/10.1115/1.3439455, (1978)

M. J. M. Barata Marques and P. A. F. Martins, "The use of dual-stream functions in the analysis of three dimensional metal forming processes", International Journal of Mechanical Sciences, Vol. 33(4), pp. 313-323, https://doi.org/10.1016/0020-7403(91)90043-3, (1991)

S. G. Chung, K. Kuwahara and O. Richmond, "Streamline-coordinate finite-difference merthod for hot metal deformations", Journal of Computational Physics, Vol. 108(1), pp. 1-7, https://doi.org/10.1006/jcph.1993.1157, (1993)

F. Hollander, "A model to calculate the complete temperature distribution in steel during hot rolling", Journal of the Iron and Steel Institute, Vol. 208, pp. 46-74, (1970)

K. Mori, K. Osakada and T. Oda, "Simulation of plane-strain rolling by the rigid-plastic finite element method", International Journal of Mechanical Sciences, Vol. 24(9), pp. 519-527, https://doi.org/10.1016/0020-7403(82)90044-3, (1982)

Y. Hwu, and J.G. Lenard, "A finite element study of flat rolling", Journal of Engineering Materials and Technology, Vol. 110(1), pp. 22-27, https://doi.org/10.1115/1.3226004, (1988)

I. Yarita, R. L. Mallett and E. H Lee, "Stress and deformation analysis of plane strain rolling process", Steel Research, Vol. 56(5), pp. 255-259, https://doi.org/10.1002/srin.198500631, (1985)

S. M. Hwang and M. S. Joun, "Analysis of hot-strip rolling by a penalty rigid-viscoplastic finite element method", International Journal of Mechanical Sciences, Vol. 34(12), pp. 971-984, https://doi.org/10.1016/0020-7403(92)90066-P, (1992)

S. M. Hwang, M. S. Joun and Y. H. Kang, "Finite element analysis of temperatures, metal flow, and roll pressure in hot strip rolling", Journal of Engineering for Industry, Vol. 115(3), pp. 290-298, https://doi.org/10.1115/1.2901663, (1993)

C. Devadas and I. V. Samarasekara, "Heat transfer during hot rolling of steel strip", Ironmaking & steelmaking, Vol. 13, pp. 311-321, (1986)

W. C. Chen, I. V. Samarasekara, A. Kumar and E. B. Hawbolt, "Mathematical modelling of heat flow and deformation during rough rolling", Ironmaking & steelmaking, Vol. 20(2), pp. 113-125, (1993)

C. Devadas, D. Baragar, G. Ruddle and I. V. Samarasekara, "The thermal and metallurgical state of steel strip during hot rolling" Metall. Trans, Vol. 22, pp. 307-316, (1991)

Z. C. Lin and Y. C. Cheng, "An investigation of the effect of speeds of work rolls on rolling strip", Journal of Engineering Materials and Technology, Vol. 117(3), pp. 341-346, https://doi.org/10.1115/1.2804549, (1995)

J. D. Fletcher and J.H. Beynon, "Heat transfer in roll gap in hot strip rolling", Ironmaking & Steelmaking, Vol. 23(1), pp. 52-57, (1996)

A. Sluzalec Jr, "A preliminary analysis of temperature within roll forging dies, using a finite element method", International Journal of Machine Tool Design and Research, Vol. 24(3), pp. 171-179, https://doi.org/10.1016/0020-7357(84)90002-7, (1984)

A.A. Tseng, F.H. Lin, A. S. Gunderia and D.S. Ni, "Roll cooling and its relationship to roll life", Metallurgical Transactions A, Vol. 20, pp. 2305-2320, https://doi.org/10.1007/BF02666666, (1989)

B. Gierulski and M. Ciernak, "Temperature field on strip cross-section during hot rolling". Steel Research International, Vol. 60(5), pp. 208-214, https://doi.org/10.1002/srin.198900276, (1989)

A.N. Karagiozis and J.G. Lenard, "Temperature distribution in a slab during hot rolling", Journal of Engineering Materials and Technology, Vol. 110(1), pp. 17-21, https://doi.org/10.1115/1.3226002, (1988)

F. Sassani and M. Xiao, "Modelling hot flat-rolling of components having curved profiles-part II. Characterization of heat transfer and flow stress", International Journal of Mechanical Sciences, Vol. 37(12), pp.1283-1293, https://doi.org/10.1016/0020-7403(95)00031-R, (1995)

W.C. Chen, I.V. Samarasekera, A. Kumar and E.B. Hawbolt, "Mathematical modelling of heat flow and deformation during rough rolling", Ironmaking & steelmaking, Vol. 20(2), pp.113-125, (1993).

S. Serajzedeh, "Effects of rolling parameters on work-roll temperature distribution in the hot rolling of steels", The International Journal of Advanced Manufacturing Technology, Vol. 35, pp. 859-866, https://doi.org/10.1007/s00170-006-0764-3, (2008).

S. Serajzedeh, A. K. Taheri, M. Nejati, J. Izadi and M. Fattahi, "An investigation on strain inhomogeneity in hot strip rolling process", Journal of Materials Processing Technology, Vol. 128(1-3), pp. 88-99, https://doi.org/10.1016/S0924-0136(02)00276-5, (2002)

S. Serajzadeh, "Prediction of temperature distribution and phase transformation on the run-out table in the process of hot strip rolling", Applied Mathematical Modelling, Vol. 27(11), pp. 861-875, https://doi.org/10.1016/S0307-904X(03)00085-4, (2003)

O. Pawelski, "Calculation of the heat transfer number for hot rolling and forging", Archive for the ironworks, Wiley Online Library, Vol. 40(10), pp. 821-827, (1969)

A. A. Tseng, S. X. Tong and T. C. Chen, "Thermal expansion and crown evaluations in rolling processes", Materials & Design, Vol. 17(4), pp. 193-204, https://doi.org/10.1016/S0261-3069(96)00061-1, (1996)

V. B. Ginzburg, "Basic principles of customized computer models for cold and hot strip mills", Iron and Steel Engineer, Vol. 62(9), pp. 21-35, (1985)

R. B. Mei, C. S. Li, X. H. Liu and B. Han, "Analysis of strip temperature in hot rolling process by finite element method", Journal of Iron and Steel Research International, Vol. 17(2), pp. 17-21, https://doi.org/10.1016/S1006-706X(10)60052-0, (2010)

Z. Hadala and Z. Malinowski, "Validation of the boundary conditions in on-line temperature model for plate rolling mill", Archives of Metallurgy and Materilas, Vol. 55(2), pp. 455-461, (2010)

H. B. Khadem, "Prediction of heat transfer in steel slab in rolling stand", MSc Dissertation, Department of Mechanical Engineering, Isfahan University of Technology (Iran), (1998)