Observer-Based Fault Estimation in Steer-by-Wire Vehicle

Main Article Content

Vladimir Djordjević
Vladimir Stojanović
Dragan Pršić
Ljubiša Dubonjić
Marcelo Menezes Morato

Abstract

In this paper, the mechanism for the fault estimation (FE) problem for a steer-by-wire (SBW) vehicle with sensor and actuator faults is investigated. To deal with the design issues, we transformed the nonlinear model of SBW vehicle into a new coordinate system to jointly estimate the sensor and actuator faults. In the new coordinate system, the Lipschitz conditions and system uncertainties are also considered. The proposed schemes essentially transform the original sys-tem into two subsystems, where subsystem-1 includes the effects of actuator faults but is free from sensor faults and subsystem-2 only has sensor faults. Then two sliding mode observers (SMOs) are designed to estimate actuator and sensor faults, respectively. The sufficient conditions for the existence of the proposed observers with H∞ performance are derived and expressed as an LMI optimization problem such that the upper bounds of the state and fault estimation errors can be minimized. Finally, the numerical example with simulation results is provided to validate the practicability and efficacy of the developed estimation strategy.

Article Details

How to Cite
[1]
V. Djordjević, V. Stojanović, D. Pršić, L. Dubonjić, and M. Menezes Morato, “Observer-Based Fault Estimation in Steer-by-Wire Vehicle ”, ET, vol. 1, no. 1, pp. 7–17, May 2022.
Section
Original Scientific Papers

References

Zhang, J., A. K. Swain, and S. K. Nguang, “Detection and isolation of incipient sensor faults for a class of uncertain nonlinear systems”, IET Contr. Theory Appl., Vol. 6, pp. 1870–1880, https://doi.org/10.1049/iet-cta.2011.0440, (2012).

Zhang, P. and J. Zou, “Observer-based fault diagnosis and self-restore control for systems with measurement de-lays”, Asian J. Control, Vol. 14, pp. 1717–1723, https://doi.org/10.1002/asjc.458, (2012)

Jayamaha DK, Lidula NW, Rajapakse AD “Wavelet-multi resolution analysis based ANN architecture for fault detec-tion and localization in DC microgrids”, IEEE Access, Vol.3(7), pp. 145371–84, https://doi.org/10.1109/ACCESS.2019.2945397, (2019)

Z. Wang, Y. Shen, X. Zhang, “Actuator fault estimation for a class of nonlinear descriptor systems”, Int J Syst Sci, Vol.45, pp. 487–496, https://doi.org/10.1080/00207721.2012.724100, (2014).

J. Yang, Y. Guo, W. Zhao, “Long short-term memory neural network based fault detection and isolation for electro-mechanical actuators”, Neurocomputing, Vol. 360, pp. 85–96, https://doi.org/10.1016/j.neucom.2019.06.029, (2019).

F. Ferracuti, V. Artists, A. Monteriù, “Algorithms for Fault Detection and Diagnosis”, MDPI AG, Basel, Switzerland, https://doi.org/10.3390/books978-3-0365-0463-6, (2021).

S. Gómez-Peñate, G. Valencia-Palomo, FR. López-Estrada, CM. Astorga-Zaragoza, R.A. Osornio-Rios, I. Santos-Ruiz, “Sensor fault diagnosis based on a sliding mode and unknown input observer for Takagi-Sugeno systems with un-certain premise variables“, Asian J Control, Vol. 21(1), pp. 339-353, https://doi.org/10.1002/asjc.1913, (2019).

D. Henry, J. Cieslak, A. Zolghadri, D. Efimov, “H∞/ H-LPV solutions for fault detection of aircraft actuator faults: bridg-ing the gap between theory and practice“, Int J Robust Nonlinear Control, Vol.25(5), pp. 649-672, https://doi.org/10.1002/rnc.3157, (2015).

Q. Jia, W. Chen, Y. Zhang, X. Chen, “Robust fault reconstruction via learning observers in linear parameter-varying systems subject to loss of actuator effectiveness“, IET Control Theory Appl, Vol. 8(1), pp. 42-50, https://doi.org/10.1049/iet-cta.2013.0417, (2014).

D. Rotondo, A. Cristofaro, T.A. Johansen, F. Nejjari, V. Puig, “Robust fault and icing diagnosis in unmanned aerial vehicles using LPV interval observers“, Int J Robust Nonlinear Control, Vol. 29(16), pp. 5456-5480, https://doi.org/10.1002/rnc.4381, (2019).

S. Li, H. Wang, A. Aitouche, N. Christov, “Unknown input observer design for faults estimation using linear parame-ter varying model. application to wind turbine systems“, Paper presented at: Proceedings of the 2018 7th Interna-tional Conference on Systems and Control, Valencia, Spain, pp. 45-50, https://doi.org/10.1109/ICoSC.2018.8587778, (2018).

J. Zhang, A.K. Swain, S.K. Nguang, “Robust sliding mode observer based fault estimation for certain class of uncer-tain nonlinear systems“, Asian Journal of Control, https://doi.org/10.1002/asjc.987, (2015).

C. Bonivento, A. Isidoria, L. Marconia, A. Paolia, “Implicitfault-tolerant control: application to induction motors“, Automatica, Vol.40(3), pp. 355–371, https://doi.org/10.1016/j.automatica.2003.10.003, (2004).

Z.W. Gao, S.X. Ding, “Sensor fault reconstruction and sensor compensation for a class of nonlinear state-space systems via a descriptor system approach“, IET Control Theory Appl, Vol.1, pp. 578–585, https://doi.org/10.1049/iet-cta:20050509, (2007).

C.P. Tan, C. Edwards, “An LMI approach for designing sliding mode observers“, Int J Control, Vol. 74(16), pp. 1559-1568, https://doi.org/10.1080/00207170110081723, (2001).

VI. Utkin, “Sliding Modes in Control and Optimization”, Berlin, Germany, Springer Science & Business Media, https://doi.org/10.1007/978-3-642-84379-2, (2013).

C.P. Tan, C. Edwards, “Sliding mode observers for detection and reconstruction of sensor faults”, Automatica, Vol. 38, pp. 1815–1821, https://doi.org/10.1016/S0005-1098(02)00098-5, (2002).

B. Jiang, M. Staroswiecki, V. Cocquempot, “Fault estimation in nonlinear uncertain systems using robust/sliding-mode observers”, IEE Proc Control Theory Appl, Vol. 151(1), pp. 29–37, https://doi.org/10.1049/ip-cta:20040074, (2004).

F.E. Thomas, I. Castillo, R.F. Benito, “Robust model-based fault detection and isolation for nonlinear processes using sliding modes”, Int J Robust Nonlinear Control, Vol. 22, pp. 89–104, https://doi.org/10.1002/rnc.1807 (2012).

CP. Tan, C. Edwards, “Sliding mode observers for robust detection and reconstruction of actuator and sensor faults”, Int J Robust Nonlinear Control, Vol. 13, pp. 443–463, https://doi.org/10.1002/rnc.723, (2003).

C.P. Tan, C. Edwards, “A robust sensor fault tolerant control scheme implemented on a crane”, Asian J Control, Vol. 9(3), pp. 340–344, https://doi.org/10.1111/j.1934-6093.2007.tb00420.x, (2007).

C. Edwards, S.K. Spurgeon, R.J. Patton, “Sliding mode observers for fault detection and isolation”, Automatica, Vol. 36, pp. 541–553, https://doi.org/10.1016/S0005-1098(99)00177-6, (2000).

X.G. Yan, C. Edwards, “Sensor fault detection and isolation for nonlinear systems based on a sliding mode observ-er”, Int J Adapt Control Signal Process, Vol. 21, pp. 657–673, https://doi.org/10.1002/acs.967, (2007).

H. Alwi, C. Edwards, C.P. Tan, “Sliding mode estimation schemes for incipient sensor faults”, Automatica, Vol. 45, pp.1679–1685, https://doi.org/10.1016/j.automatica.2009.02.031, (2009).

X.G. Yan, C. Edwards, “Robust sliding mode observer-based actuator fault detection and isolation for a class of nonlinear systems”, Int J Syst Sci, Vol. 39(4), pp. 349–359, https://doi.org/10.1080/00207720701778395, (2008).

J. Zhang, A.K. Swain, S.K. Nguang, “Detection and isolation of incipient sensor faults for a class of uncertain nonlin-ear systems”, IET Control Theory Appl, Vol. 6, pp. 1870–1880, https://doi.org/10.1049/iet-cta.2011.0440, (2012).

T. Floquet, C. Edwards, S.K. Spurgeon, “On sliding mode observers for systems with unknown inputs”, Int J Adapt Control Signal Process, Vol. 21, pp. 638–656, https://doi.org/10.1002/acs.958, (2007).

F. Zhu, “State estimation and unknown input reconstruction via both reduced-order and high-order sliding mode observers”, J Process Control, Vol. 22, 296–302, https://doi.org/10.1016/j.jprocont.2011.07.007, (2012)

M. Jelali, A. Kroll, “Hydraulic Servo-systems: Modelling, Identification and Control“, Berlin: Springer; https://doi.org/10.1007/978-1-4471-0099-7, (2003).

R. Raoufi, H.J. Marquez, A.S.I. Zinober, “H∞ sliding mode observer for uncertain nonlinear Lipschitz systems with fault estimation synthesis“, Int J Robust Nonlinear Control, Vol. 20, pp.1785–1801, https://doi.org/10.1002/rnc.1545, (2010).

M. Corless, J. Tu, “State and input estimation for a class of uncertain systems“, Automatica, Vol. 34, pp. 757–764, https://doi.org/10.1016/S0005-1098(98)00013-2, (1998).

S. Hui, S.H. Zak, “Observer design for system with unknown inputs“, Int. J. Appl. Math. Comput. Sci, Vol.15(4), pp. 431–446, (2005).

J. Zhang, A.K. Swain, S.K. Nguang, “Robust Observer-Based Fault Diagnosis for Nonlinear Systems Using MATLAB®“, Springer International Publishing, Switzerland, https://doi.org/10.1007/978-3-319-32324-4, (2016).

Z.W. Gao, S.X. Ding, “Sensor fault reconstruction and sensor compensation for a class of nonlinear state-space systems via a descriptor system approach“, IET Control Theory Application, Vol. 1, pp. 578–585, https://doi.org/10.1049/iet-cta:20050509, (2007).

C. Gao, Q. Zhao, G. Duan, “Robust actuator fault diagnosis scheme for satellite attitude control systems“, J Frankl Inst, Vol. 350(9), pp, 2560–2580, https://doi.org/10.1016/j.jfranklin.2013.02.021, (2013).

F. Zhu, Z. Han, “A note on observers for lipschitz nonlinear systems”, IEEE Trans Autom Control, Vol. 47, pp.1751–1754, https://doi.org/10.1109/TAC.2002.803552, (2002)